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ABSTRACT Polyp bail-out constitutes both a stress response and an asexual reproductive
strategy that potentially facilitates dispersal of some scleractinian corals, including several
dominant reef-building taxa in the family Pocilloporidae. Recent studies have proposed
that microorganisms may be involved in onset and progression of polyp bail-out. However,
changes in the coral microbiome during polyp bail-out have not been investigated. In this
study, we induced polyp bail-out in Pocillopora corals using hypersaline and hyperthermal
methods. Bacterial community dynamics during bail-out induction were examined using
the V5-V6 region of the 16S-rRNA gene. From 70 16S-rRNA gene libraries constructed from
coral tissues, 1,980 OTUs were identified. Gammaproteobacteria and Alphaproteobacteria
consistently constituted the dominant bacterial taxa in all coral tissue samples. Onset of
polyp bail-out was characterized by increased relative abundance of Alphaproteobacteria
and decreased abundance of Gammaproteobacteria in both induction experiments, with
the shift being more prominent in response to elevated temperature than to elevated
salinity. Four OTUs, affiliated with Thalassospira, Marisediminitalea, Rhodobacteraceae, and
Myxococcales, showed concurrent abundance increases at the onset of polyp bail-out in
both experiments, suggesting potential microbial causes of this coral stress response.

IMPORTANCE Polyp bail-out represents both a stress response and an asexual reproduc-
tive strategy with significant implications for reshaping tropical coral reefs in response
to global climate change. Although earlier studies have suggested that coral-associated
microbiomes likely contribute to initiation of polyp bail-out in scleractinian corals, there
have been no studies of coral microbiome shifts during polyp bail-out. In this study, we
present the first investigation of changes in bacterial symbionts during two experiments
in which polyp bail-out was induced by different environmental stressors. These results
provide a background of coral microbiome dynamics during polyp bail-out development.
Increases in abundance of Thalassospira, Marisediminitalea, Rhodobacteraceae, and
Myxococcales that occurred in both experiments suggest that these bacteria are potential
microbial causes of polyp bail-out, shedding light on the proximal triggering mechanism of
this coral stress response.
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Contemporary climate change has inflicted great stresses on tropical coral reefs. Ocean
warming is pushing many tropical corals beyond their tolerance limits, causing more fre-

quent massive bleaching events, including four of pan-tropical scale in 1998, 2010, 2015 to
2016, and 2019 to 2020 (1–4). Coral bleaching refers to a loss of endosymbiotic dinoflagel-
lates (family Symbiodiniaceae) in coral hosts, which results in “whitening” (5). As most scler-
actinian corals utilize photosynthates from symbiotic dinoflagellates as their main carbon
source, severe bleaching often results in mass coral mortality, due to energy deficiency and/
or increased vulnerability to other stresses (6–9).

In addition to ocean warming, increased extreme weather events, e.g., precipitation
and drought, due to alteration of atmospheric circulation patterns, can cause dramatic
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fluctuations in seawater salinity (10, 11). As corals are osmoconformers with a limited
range of salinity tolerance, salinity changes can impose additional stresses on tropical corals.
Hypersaline seawater induces cellular stresses and reduces photosynthesis and/or respiration
in stony corals (12–14). Interestingly, some scleractinian corals, e.g., Siderastrea siderea and
Fungia granulosa, are able to acclimate to long-term hypersaline environments, possibly
by modulating the associated microbiome (13, 14). The ecological significance of this acclima-
tion in corals, however, is still unclear, due to the scarcity of studies.

Coral polyp bail-out represents a stress response involving coenosarc tissue degradation
and detachment of solitary polyps (15). As bailed-out polyps can resettle once stresses are
relieved, this phenomenon has been proposed as an asexual reproduction strategy (16–18).
Although few data are available regarding polyp bail-out in the field (15, 19), laboratory
experiments have demonstrated induction of this response in several coral species under
various conditions, including treatments with hypersaline or hyperthermal seawater (18, 20).
Unlike bleaching, polyp bail-out generates free-living, uncalcified polyps that can drift away
in currents, allowing corals to escape local stresses. Before resettlement, detached polyps
can survive for weeks to months (18, 20–22), enabling them to disperse much farther than
by traditional reproductive methods, such as spawning, brooding, and fragmentation.
Indeed, polyp bail-out has been proposed as a possible invasion strategy of the orange
cup coral, Tubastraea coccinea (23, 24). This stress response therefore may serve to preserve
tropical scleractinian corals as well as to reshape coral reef distributions in the face of global
climate change.

Coral-associated bacteria (CAB) constitute an important part of coral holobionts,
contributing to coral physiology and pathology and determining coral health (25, 26).
Alteration of associated bacterial communities is a common coral response to environmental
fluctuations, which allows rapid acquisition of advantageous coral symbionts in changed
environments (27–30). However, reorganization of CAB also enables invasion of oppor-
tunistic pathogens (28). Severe or prolonged stresses may also cause irreversible micro-
biome changes, which in turn reduce fitness of coral holobionts (25). Recently, genetic studies
on polyp bail-out have pointed to a possible link between coral microbiomes and onset of
this stress response. Asynchronous expression of tumor necrosis factor (TNF) and tumor ne-
crosis factor receptor (TNFR) genes in Pocillopora corals during bail-out induction led to
a hypothesis of a microbial trigger for initiation of polyp bail-out (31, 32). Activation of the
Toll-like receptor signaling pathway and immune responses also implies changes of
coral-microbiome interactions during polyp bail-out progression (33). However, to our
knowledge no study has so far attempted to characterize microbes responsible for initiation
of polyp bail-out.

In the present study, we provide the first CAB data collected during development of
polyp bail-out, induced in Pocillopora corals by hypersaline and hyperthermal treatments.
These results broaden our understanding of polyp bail-out and shed light on methods to
promote polyp recovery and resettlement.

RESULTS
Coral polyp bail-out and species identification. To investigate microbiome dynamics

during polyp bail-out, fragments from five coral colonies were subjected to either a hypersa-
line or a hyperthermal treatment to induce polyp bail-out. In the hypersaline experiment,
polyps retracted into corallites at 12 h in the treatment group in response to the stress (salin-
ity at 43%; Fig. 1). The hypersaline method induced polyp detachment in all coral samples
in the treatment group at 24 h, when seawater salinity reached 47% (Fig. 1). For the hyper-
thermal experiment, polyp retraction was observed at day 2 (31°C). Unlike the hypersaline
experiment, polyp detachment in the hyperthermal experiment was observed at two differ-
ent times: at day 5 in two of the fragments (34°C; Pocillopora samples number 15 and num-
ber 24) and at day 7 in the remaining three fragments (34°C; Pocillopora samples number
10, number 22, and number 23; Fig. 1). As both represented onset of polyp detachment,
samples at day 5 and day 7 were pooled (denoted days 5 to 7) in subsequent analyses (so
too, corresponding samples in the control group). Detached polyps in both experiments
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showed intact morphological features similar to those reported in earlier studies (31, 33),
including round to cylindrical bodies and intact tentacles, indicating successful induction of
polyp bail-out instead of tissue sloughing or polyp death. No samples in the control groups
showed any signs of bleaching, bail-out, or any other stress response in either experiment.
Interestingly, one coral sample (Pocillopora number 15) was slightly bleached 1 day after
incubation at 34°C (day 3) and was severely bleached by the time polyp bail-out was
observed (Fig. S1). Genotyping based on phylogenetic analyses with published reference
sequences (using neighbor-joining and maximum likelihood methods) grouped Pocillopora
number 15 with P. damicornis, while the remaining 4 coral colonies employed in this study
were grouped with P. acuta (Fig. S2).

16S-rRNA data processing. A total of 16,760,948 reads were generated from 72
16S-rRNA gene libraries, including 30 libraries from the hypersaline experiment (5 colonies * 2
conditions * 3 time points), 40 libraries from the hyperthermal experiment (5 colonies * 2 condi-
tions * 4 time points), and 2 tissue-negative controls included at the DNA extraction step.
Mothur successfully assembled 7,988,258 contigs, among which 247,181 nonredundant contigs
were identified after aligning against the SILVA reference database. Deduplication and removal
of chimeric and nonbacterial contigs further reduced this number to 35,159 unique contigs.

FIG 1 Experimental designs of polyp bail-out induction using hypersaline (upper; salinity unit: %) and
hyperthermal (lower; temperature unit: °C) strategies. Onset of polyp bail-out is highlighted with brown
dots. Scale bar: 1 mm (200 mm in photos of bailed-out polyps).
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After decontamination usingmicroDecon, the remaining unique contigs (32,413) were classified
into 1,980 bacterial Operational Taxonomic Units (OTUs), belonging to 52 bacterial classes.
Sequencing depths were in the range of 70,259 to 137,568 sequences/library among con-
structed coral tissue libraries, with an average of about 103,291 sequences/library.

Alpha diversity in constructed libraries. Given that Pocillopora number 15 was
identified as P. damicornis and showed discernible physiological response differences
(bleaching before bail-out) compared to the others, corresponding data sets were not
included in subsequent analyses. In the hypersaline experiment, a significant difference
was found among time points for the Chao1 index (Friedman’s rank sum test; P , 0.05;
Fig. 2), whereas in the hyperthermal experiment, significant differences were identified

FIG 2 Alpha diversity was estimated using Chao1 richness, inverse Simpson, and Shannon diversity indices. Onset of
polyp bail-out is highlighted with red boxes.
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among time points for the Shannon and inverse Simpson indexes. Neither experiment
showed a significant treatment effect. Although for all three indexes higher values were
found at the onset of polyp bail-out in both experiments (24 h and days 5 to 7 in the hyper-
saline and hyperthermal experiments, respectively), none of the pairwise comparisons to
the corresponding control groups showed significant differences after FDR adjustment (pair-
wise Wilcoxon rank sum test). Detailed results of statistical analyses are provided in Table S1
and a corresponding plotting including Pocillopora number 15 is provided in Fig. S3.

Structure of coral-associated bacterial communities and beta diversity. Class level.
When grouping OTUs according to their classes, all non-bail-out P. acuta libraries were
dominated by Gammaproteobacteria (mean 6 standard deviation = 52% 6 13%) and
Alphaproteobacteria (33% 6 12%; Fig. S4; results including Pocillopora number 15 are
provided in Fig. S5). A decrease in abundance of Gammaproteobacteria (23% 6 11%) and
an increase in Alphaproteobacteria (57%6 15%) were observed in libraries of polyp bail-out
in both the hypersaline (24 h) and hyperthermal experiments (days 5 to 7). Two-factor per-
mutational multivariate analysis of variance (PERMANOVA) for class-level bacterial composi-
tion identified significant differences among libraries based on both treatment and time in
the hyperthermal experiment (two-factor PERMANOVA; P , 0.05; Table S2), but neither fac-
tor was significant in the hypersaline experiment. A significant interaction between treat-
ment and time was also identified in the hyperthermal experiment. However, when focusing
on treatment effect at each time point, none of the pairwise comparisons in either experi-
ment showed significant differences after P-value adjustment using the false discovery rate
method (FDR-adjusted P-value, 0.05).

OTU level. At the OTU level, OTU0001 (Pseudomonas sp., 36% 6 9%) and OTU0002
(Rhodobacteraceae_unclassified, 20%6 7%), dominated all non-bail-out P. acuta libraries
in the hypersaline experiment (Fig. 3; results including Pocillopora number 15 are provided
in Fig. S6). A discernible decrease in OTU0001 (19% 6 16%) and an increase in OTU0004
(Thalassospira sp., from 2% 6 1% to 13% 6 8%) were found at the onset of polyp bail-out
(24 h in the treatment group). Significant differences were found among time points in
the hypersaline experiment (two-factor PERMANOVA; P, 0.05; Table S3), but not between
treatments.

In the hyperthermal experiment, non-bail-out P. acuta libraries were generally dominated
by OTU0001 (34% 6 17%), but with considerable variation (0 to 59%; Fig. 3). Following
OTU0001, various taxa dominated at different time points and conditions, including OTU0002,
OTU0003 (Curvibacter sp.), OTU0005 (Limimaricola sp.), and OTU0006 (Marinobacter sp.). As in
the hypersaline experiment, onset of polyp bail-out in the hyperthermal experiment (days 5 to

FIG 3 OTU composition in P. acuta in the hypersaline (left) and hyperthermal (right) experiments. Only OTUs with total abundances greater than 0.5% in the
whole data set (both experiments) are presented. Samples are arranged in the same order for each condition (Pocillopora number 10, number 22, number 23,
number 24). Onset of polyp bail-out is highlighted with red boxes.
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7 in the treatment group) was characterized by a decrease in OTU0001 (8% 6 8%) and an
increase in OTU0004 (from 3%6 2% to 42%6 13%). Significant differences in OTU composi-
tion were found between treatment and control groups and among time points in the hyper-
thermal experiment, with the interaction between the two factors also being significant (two-
factor PERMANOVA; P , 0.05; Table S3). When focusing on the treatment effect at individual
time points, differences between treatment and control groups were significant throughout
the hyperthermal experiment, except on day 1. Consistent with the statistical analysis, non-
metric multidimensional scaling (NMDS) plotting showed clear separation of treatment and
control groups at the onset of polyp bail-out in the hyperthermal experiment (days 5 to 7),
while the differentiation was less clear in the hypersaline experiment (Fig. 4; results including
Pocillopora number 15 are provided in Fig. S7). Homogeneity of molecular variance analysis
(HOMOVA) identified greater variances at the onset of polyp bail-out in both experiments.
However, the differences were not significant after FDR adjustment (Table S4). A complete list-
ing of OTU abundance and taxa is provided in Tables S5 to S7.

Indicator OTUs at the onset of polyp bail-out. Using LEfSe, 7 and 40 OTUs were
identified as significant indicators for the onset of polyp bail-out in the hypersaline and hyper-
thermal experiments, respectively (Kruskal-Wallis test; P , 0.05; logarithmic LDA score . 2;
Fig. S8). Four indicator OTUs were common to both experiments, including OTU0004,
OTU0012 (Marisediminitalea sp.), OTU0036 (Rhodobacteraceae_unclassified), and OTU0080
(Myxococcales_unclassified), which all showed clearly higher abundances when polyp bail-
out was observed (24 h and days 5 to 7 in the hypersaline and hyperthermal experiments,
respectively; Fig. 5).

DISCUSSION

Polyp bail-out may be a strategy of certain scleractinian corals to facilitate dispersal.
Contemporary studies have documented polyp bail-out in response to different stressors

FIG 4 NMDS visualization of OTU composition in the hypersaline (a) and hyperthermal (b) experiments. Libraries in
the treatment and control groups are presented in squares and circles, respectively. Sampling points are highlighted
in different colors (N = 4 per condition).
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(15, 18, 22, 33–35). In the present study, we conducted two experiments to induce polyp
bail-out in P. acuta, a scleractinian coral commonly used in polyp bail-out research, and
examined bacterial community changes during bail-out induction (21, 31, 33, 36). In both
experiments, microbiomes in P. acuta corals were dominated by Proteobacteria (especially
Gammaproteobacteria and Alphaproteobacteria; Fig. S4), consistent with those identified
in field-collected samples (37, 38). At the OTU level, Pseudomonas sp. (OTU0001) and an
unclassified Rhodobacteraceae bacterium (OTU0002) were the dominant bacterial taxa
in non-bail-out libraries (Fig. 3). Pseudomonadaceae and Rhodobacteraceae predominate
in P. acuta in Singapore and the Great Barrier Reef (38–40). Several marine isolates of
Pseudomonas possess antimicrobial, antifungal, or biodegrading activity (41, 42). Although
evidence is yet not available for scleractinian corals, Pseudomonas bacteria isolated from the
soft corals Sarcophyton glaucum and Sinularia polydactyla inhibit growth of some other bac-
teria and fungi and are thought to protect coral hosts against pathogens (43, 44). Our results
add further evidence for the association of Pseudomonas bacteria with P. acuta, warranting
further investigation of its ecological functions in coral holobionts. On the other hand,
Endozoicomonas, another bacterial clade reportedly predominant in P. acuta (37, 45) and
other Pocillopora corals (46, 47), presented only sporadically in our coral samples (Fig. 3).
As microbiomes in P. acuta vary even within short geographic distances (38, 40), incon-
sistency of our results with other studies is not surprising and can likely be attributed to
site-specific variation in P. acutamicrobiomes.

In this study, we observed CAB changes as a temporal response in both our experiments
(especially the hyperthermal experiment; Fig. 3). Given that culture conditions in our indoor
aquaria (closed system; lower light intensity; artificial seawater) differed from those in which
corals were acclimated before experiments (open system; natural sunlight; sand-filtered nat-
ural seawater), CAB changes during cultivation are not unexpected. In contrast to the time
effect, the hypersaline treatment exerted no significant effect on microbiomes of P. acuta.
Addition of hypersaline seawater in the treatment aquarium could have introduced exotic
bacteria and represent another possible factor in the treatment effect (no water was added
to the control aquarium). Nevertheless, our findings suggest a negligible effect from addition
of water during 24 h. These results are also consistent with that reported in F. granulosa, in
which microbiomes remained stable after short-term (4 h) exposure to hypersaline stress
(14). Unfortunately, as studies about effects of hypersaline stresses on coral microbiomes are
limited, a solid conclusion cannot be drawn without further investigation.

On the other hand, a significant treatment effect was identified in our hyperthermal
experiment (Fig. 3). Thermal stresses can strongly influence coral physiology and may

FIG 5 Abundance changes of OTU0004 (Thalassospira sp.), OTU0012 (Marisediminitalea sp.), OTU0036 (Rhodobacteraceae_unclassified), and OTU0080
(Myxococcales_unclassified) in both experiments. Boxes and whiskers indicate the quartiles and full range of the data sets, respectively.
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alter microbiomes in stony corals. Decreased Endozoicomonas and increased Rhodobacteraceae
or Vibrio have frequently been found in thermally stressed corals (48–54). However, these
changes were not found in our corals, reflecting a species- or location-specific response
in our P. acuta. Another potential effect from the hyperthermal treatment is stronger
evaporation at elevated temperatures, which caused higher salinity fluctuations in the
treatment aquarium. Meanwhile, to compensate for stronger evaporation, higher vol-
umes of fresh water were added to the treatment aquarium, representing another possi-
ble factor in differences between the treatment and control groups in our hyperthermal
experiment. It is also worth noting that bacterial communities showed a significant dif-
ference between treatment and control groups even at the beginning of our hyperther-
mal experiment (day 0 in Fig. 3). The significant effect of hyperthermal treatment in this
study therefore may also be attributed to a cage effect in our experimental setup. As bac-
terial composition in seawater was not examined in this study (due to the small size and
limited number of aquaria), how water addition and cage effects influenced coral micro-
biomes remains unclear. Nevertheless, given that bacterial communities in treatment
and control groups were not significantly different at the class level (per time point; Fig.
S4), observed variations at the OTU level probably reflect a shift between functionally
redundant bacterial groups without significant detriment to coral physiology, as sug-
gested by Lu et al. (55) and Hernandez-Agreda et al. (56).

In the LEfSe analysis, four indicator OTUs of polyp bail-out, affiliated with Thalassospira
(OTU0004), Marisediminitalea (OTU0012), Rhodobacteraceae (OTU0036), and Myxococcales
(OTU0080), occurred in all our experiments (Fig. 5 and Fig. S8). A BLAST search of OTU0004
in NCBI (rRNA/ITS databases) yielded two Thalassospira species, T. xiamenensis (GenBank
accession number: NR_042780.1; 99.31% gene identity) and T. permensis (NR_116841.1;
99.31% gene identity). Thalassospira bacteria were found in association with healthy corals
such as Cladocora caespitosa, Millepora alcicornis, and Sinularia sp. (57–60) and genetic
studies have suggested their possible roles in phosphorus and iron cycles (57, 61). On the
other hand, OTU0012, OTU0036, and OTU0080 best matched Marisediminitalea aggregata
(NR_116838.1; 98.97% gene identity), Allosediminivita pacifica (NR_126266.1; 98.63% gene
identity), and Sandaracinus amylolyticus (NR_118001.1; 93.15% gene identity), respectively.
Common increases of these bacteria in both our experiments imply their involvement in de-
velopment of polyp bail-out. Although, to our knowledge, no previous study has reported
increases of these bacterial taxa in thermally or osmotically stressed corals, species- and site-
specific differences in coral microbiomes may also contribute. The possibility of opportunis-
tic growth of these bacteria thus cannot be fully excluded. It should also be mentioned that
due to the design of this study (limited size of samples, only one aquarium for each treat-
ment group, etc.), the present results should be interpreted with caution. These findings,
however, provide a basis to test the hypothetical involvement of microbes in polyp bail-out.
Future studies of the capacity of specific bacteria to induce polyp bail-out as pure isolates or
a community may yield a clearer picture of microbial role in polyp bail-out.

Notably, in P. damicornis (Pocillopora number 15) we observed bleaching on day 3
in the hyperthermal experiment, prior to the occurrence of polyp bail-out (Fig. S1).
However, bleaching was not observed in our P. acuta corals (Fig. 1), suggesting differ-
ent resistance to bleaching in the two coral species. In an earlier study, cooccurrence of
bleaching and polyp bail-out was observed in P. damicornis under hyperthermal stress (62).
Interestingly, bailed-out polyps in the same study showed less clear morphological differen-
tiation, which was also observed in some of our bleached, bailed-out polyps from P. dami-
cornis. This undifferentiated polyp morphology resembles that of degenerated polyps
reported in Chuang et al. (21), implying possible physiological damage in bailed-out polyps
by hyperthermal stress. Given that polyp recovery after bail-out is likely an energetically
demanding process, thermal bleaching must significantly reduce recovery of bailed-out pol-
yps, compromising their resettlement capacity. The relative developmental speeds of bail-
out and bleaching, therefore, may have strong implications for dispersal potential of corals
against the specter of future climate change.
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MATERIALS ANDMETHODS
Coral sampling. In summer 2021, we obtained several Pocillopora corals from the Onna fisheries

association in Okinawa, Japan, which collected corals from the ocean near Onna Village on the western side of
Okinawa. Collected corals were transferred to an outdoor, open-system aquarium (3000 L) at the OIST Marine
Science Station at Seragaki, Okinawa. Sand-filtered seawater pumped from the ocean was supplied to the out-
door aquarium. All coral colonies were acclimated for over 6 months prior to experiments.

Polyp bail-out induction and coral tissue sampling. Five healthy colonies were employed in
experiments in the present study. Induction of polyp bail-out was accomplished using hypersaline and
hyperthermal methods, modified from Chuang and Mitarai (31) and Gösser et al. (33), respectively. One day
prior to each experiment, small fragments (;1 cm branch tips; six fragments/colony for the hypersaline experi-
ment and eight fragments/colony for the hyperthermal experiment) were separated from selected colonies
using a clean bone cutter and placed in two 5-L indoor aquaria (one denoted as the treatment group and the
other denoted as the control group). Each aquarium was equipped with a 3.4 W slim filter pump (GEX, Japan)
for water circulation. Seawater was prepared at 35% by dissolving artificial sea salt (Kaisuimaren, Japan) in
reverse osmosis (RO) water. Light was provided at 50 mmol photons/m2/s using a Mitras Lightbar 2 (GHL,
Germany) with a 12-h light-dark cycle (light: 06:00 to 18:00) and seawater temperature was set at 25°C in both
aquaria using two 110W aquarium heaters (Kotobuki Kogei, Japan). Seawater salinity and temperature were
monitored with a ProfiLux 4 aquarium controller (GHL, Germany).

Hypersaline experiment. Hypersaline artificial seawater was prepared in a separate aquarium at
49% and supplied to one of the 5-L aquaria (treatment group) at 4 mL/min, while no water was added
to the other aquarium (control group). An overflow design maintained a fixed water volume in both
aquaria during the hypersaline experiment. The experiment was started at 10:00 a.m. From both treat-
ment and control groups, one fragment from each colony was collected using a clean forceps at 0 h,
12 h, and 24 h (onset of polyp bail-out, defined as distinguishable colony dissociation and polyp detach-
ment; Fig. 1), making a total of 5 fragments per condition per time point. Collected coral fragments were
immediately placed in sterile 1.5 mL Eppendorf tubes and stored at 220°C. For each sample of polyp
bail-out, detached polyps (collected using a micropipette and a sterile pipette tip with ,100 mL sea-
water) and the remaining skeleton (with undetached polyps, if present; collected using a clean forceps)
were collected as one sample to keep the sampling consistent during the experiment.

Hyperthermal experiment. After 1 day of acclimation at 25°C, one aquarium was warmed by 3°C
every day (conducted at 10:00 am; treatment group), while the other aquarium was maintained at 25°C (con-
trol group). It took several minutes to reach the set temperature. As polyp bail-out was reported at 34°C in a
previous study (33), the treatment group was warmed to 34°C and was maintained at that temperature there-
after. One fragment from each colony was collected using a clean forceps in both treatment (before tempera-
ture changes) and control groups at day 0, day 1, day 2, and when polyp bail-out was observed (days 5 to 7;
Fig. 1), equaling 5 fragments per condition per time point. To compensate for water evaporation during the
experiment (salinity fluctuation ,1% in the control group and ,3% in the treatment group at elevated tem-
peratures), fresh RO water was added to both aquaria every day (after tissue sampling) to a fixed water level.
As in the hypersaline experiment, both detached polyps and skeletons were collected for samples of polyp
bail-out. Collected coral samples were immediately stored at220°C until further processing.

DNA extraction, species identification, and 16S-rRNA gene sequencing. In total, 70 coral tissue
samples were collected, including 30 from the hypersaline experiment (5 colonies � 2 conditions � 3
time points) and 40 from the hyperthermal experiment (5 colonies � 2 conditions � 4 time points). Total DNA
from collected tissue samples was extracted using a DNeasy blood and tissue kit (Qiagen, Japan) following the
manufacturer’s instructions. To focus on the microbiome in coral tissues and the surface mucus layer, skeletons
were not ground and were removed after attached tissues were all lysed in tissue lysis buffer. Two tissue-nega-
tive controls (containing only tissue lysis buffer) were included in the DNA extraction step. DNA concentrations
were checked using a Qubit 4 Fluorometer (Thermo Fisher Scientific, Japan). For each coral colony, the DNA
sample at 0 h in the control group of the hypersaline experiment was used for genotyping coral species. The
mitochondrial region was amplified using the primer pair FATP6.1/RORF and PCR conditions reported in Flot
et al. (63). PCR was conducted using AmpliTaq Gold 360 Master Mix (Thermo Fisher Scientific, Japan) following
the product manual. PCR products were submitted to Macrogen, Japan for Sanger sequencing from both
ends. Sequencing results were aligned with reference sequences (accession numbers: KY587458-KY587472;
JX985584-JX985620; EU374225-EU374261) reported in previous studies (63–65). Coral species were identified
by phylogenetic analyses based on both Neighbor-Joining and Maximum Likelihood trees, constructed using
substitution models reported in Schmidt-Roach et al. (66) and Poquita-Du et al. (65), respectively. All phyloge-
netic analyses were conducted using MEGA X, with 1,000 bootstrap pseudoreplications (67). To examine micro-
biome composition in the corals, DNA samples (including the negative controls) were submitted to paired-end
(2� 300 bp) Illumina MiSeq (v3) sequencing. The primer pair specific for the V5-V6 region of the 16S-rRNA gene
(784F: 59-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGATTAGATACCCTGGTA-399; 1061R: 59-GTCTCGTGGG
CTCGGAGATGTGTATAAGAGACAGCRRCACGAGCTGACGAC-39) was used to construct 16S-rRNA gene libraries,
given their utility in detecting bacterial communities associated with corals (14, 68, 69). Preparation of 16S-rRNA
gene libraries and subsequent sequencing were conducted by the Sequencing Section at the Okinawa Institute
of Science and Technology (OIST), Japan.

16S-rRNA sequencing data processing. We used Mothur version 1.44.1 (70) to analyze sequencing
data. Raw data were first assembled into contigs using the “make.contigs” command in Mothur with default
parameter settings, which assembles paired sequencing reads into contigs according to the corresponding
quality scores in fastq files. Given a median length of 308 bp in our assembled contigs, assembled contigs lon-
ger than 350 bp or shorter than 250 bp were filtered out using the “screen.seqs” command with the parame-
ters: minlength = 250 and maxlength = 350, assuming they represent incorrect/unsuccessful assembly. Criteria
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for ambiguous base and homopolymer filtering were set as suggested by the Mothur development team
(maxambig = 0, and maxhomop = 8). Duplicated contigs were removed using the “unique.seqs” command
and remaining contigs were aligned against the SILVA database v138_1 (71). Contigs that differed by #3 bp
were clustered using the “pre.cluster” command, assuming about 1% error in the sequencing data. Chimeric
contigs were removed using the “chimera.vsearch” command. Taxonomy of remaining contigs was deter-
mined using an RDP database (version 18) at a cutoff value of 80 and nonbacterial contigs were removed.
Decontamination was then conducted using microDecon (72), software that assumes fixed ratios among con-
taminant contigs in blank (tissue-negative controls in this study) and true samples and removes them from
true samples using a proportion-based approach. Parameters in microDecon were set as the default, except for
“thresh,” which was set to 1 to accommodate genotype-specific contigs. After decontamination, contigs of
$97% similarity were grouped into OTUs and consensus taxa were assigned. For further analyses, coral tissue
libraries were rarefied by randomly subsampling 70,259 contigs (the minimum among all libraries; Good’s cov-
erage .99%) in each library. Bacterial alpha diversity in each library was calculated for the Chao1, inverse
Simpson, and Shannon indexes following instructions in Mothur. Nonmetric multidimensional scaling (NMDS)
plotting was conducted independently for the hypersaline and hyperthermal experiments to visualize beta di-
versity among conditions (treatments and time points) in each experiment.

Statistical analyses. Statistical analyses for alpha and beta diversity were conducted in the R envi-
ronment (v4.2.3) or Mothur (v1.44.1). Given that samples collected at each time point in this study represented
only pseudoreplicates (only one aquarium was used for each treatment in our experiments) and were repeat-
edly sampled from the same colonies, nonparametric statistical analyses were applied. Friedman’s rank sum
test was conducted to examine statistical differences in alpha diversity among conditions (treatments or time
points) for each experiment. Although Friedman’s test does not test for interactions between factors, post hoc
analysis for alpha diversity was conducted using the pairwise Wilcoxon rank sum test for all possible combi-
nations of conditions (treatments � time points) to allow examination of differences between treatment
and control groups at specific time points. Statistic differences in bacterial composition among conditions in
each experiment were tested using two-factor permutational multivariate analysis of variance (two-factor
PERMANOVA; 999 permutations) with the adonis2() function in the R package, vegan, with subsequent mul-
tiple pairwise comparisons conducted using the pairwise.adonis2() function. Differences in data variance
between conditions (treatments � time points) in each experiment were examined by homogeneity of mo-
lecular variance analysis (HOMOVA; 1,000 permutations), conducted in Mothur. To identify indicator OTUs re-
sponsible for polyp bail-out, an LDA Effect Size (LEfSe) analysis was carried out for coral tissue libraries at the
time of polyp bail-out in both experiments (24 h in the hypersaline experiment; 5 to 7 day in the hyperthermal
experiment) using default settings (73). Differences were considered significant at P , 0.05 (FDR-adjusted
P-values for multiple comparisons) for all statistical analyses.

Data availability. Raw MiSeq sequencing data have been uploaded to the NCBI Sequence Read
Archive (SRA) under BioProject PRJNA906327.
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